View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Enhanced spatio-temporal electric load forecasts using less data with active deep learning |
Identification Number: |
doi:10.7910/DVN/3VYYET |
Distributor: |
Harvard Dataverse |
Date of Distribution: |
2022-03-31 |
Version: |
3 |
Bibliographic Citation: |
Aryandoust, Arsam, 2022, "Enhanced spatio-temporal electric load forecasts using less data with active deep learning", https://doi.org/10.7910/DVN/3VYYET, Harvard Dataverse, V3 |
Citation |
|
Title: |
Enhanced spatio-temporal electric load forecasts using less data with active deep learning |
Identification Number: |
doi:10.7910/DVN/3VYYET |
Authoring Entity: |
Aryandoust, Arsam (ETH Zürich) |
Distributor: |
Harvard Dataverse |
Access Authority: |
Aryandoust, Arsam |
Depositor: |
Aryandoust, Arsam |
Date of Deposit: |
2022-03-31 |
Holdings Information: |
https://doi.org/10.7910/DVN/3VYYET |
Study Scope |
|
Keywords: |
Computer and Information Science, Earth and Environmental Sciences, Mathematical Sciences |
Abstract: |
Aryandoust, A., Patt, A. & Pfenninger, S. Enhanced spatio-temporal electric load forecasts using less data with active deep learning. Nature Machine Intelligence 4, 977–991 (2022). https://doi.org/10.1038/s42256-022-00552-x |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Other Study Description Materials |
|
Label: |
dataset.zip |
Text: |
contains two public folders: data and results |
Notes: |
application/zip |