Enhanced spatio-temporal electric load forecasts using less data with active deep learning (doi:10.7910/DVN/3VYYET)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

Document Description

Citation

Title:

Enhanced spatio-temporal electric load forecasts using less data with active deep learning

Identification Number:

doi:10.7910/DVN/3VYYET

Distributor:

Harvard Dataverse

Date of Distribution:

2022-03-31

Version:

3

Bibliographic Citation:

Aryandoust, Arsam, 2022, "Enhanced spatio-temporal electric load forecasts using less data with active deep learning", https://doi.org/10.7910/DVN/3VYYET, Harvard Dataverse, V3

Study Description

Citation

Title:

Enhanced spatio-temporal electric load forecasts using less data with active deep learning

Identification Number:

doi:10.7910/DVN/3VYYET

Authoring Entity:

Aryandoust, Arsam (ETH Zürich)

Distributor:

Harvard Dataverse

Access Authority:

Aryandoust, Arsam

Depositor:

Aryandoust, Arsam

Date of Deposit:

2022-03-31

Holdings Information:

https://doi.org/10.7910/DVN/3VYYET

Study Scope

Keywords:

Computer and Information Science, Earth and Environmental Sciences, Mathematical Sciences

Abstract:

Aryandoust, A., Patt, A. & Pfenninger, S. Enhanced spatio-temporal electric load forecasts using less data with active deep learning. Nature Machine Intelligence 4, 977–991 (2022). https://doi.org/10.1038/s42256-022-00552-x

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Other Study-Related Materials

Label:

dataset.zip

Text:

contains two public folders: data and results

Notes:

application/zip