View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Replication Data for: Economic shifts in agricultural production and trade from climate change |
Identification Number: |
doi:10.7910/DVN/48BCMJ |
Distributor: |
Harvard Dataverse |
Date of Distribution: |
2018-09-04 |
Version: |
1 |
Bibliographic Citation: |
Porfirio, Luciana, 2018, "Replication Data for: Economic shifts in agricultural production and trade from climate change", https://doi.org/10.7910/DVN/48BCMJ, Harvard Dataverse, V1, UNF:6:S3jTz86/iDEbZC3U69MzLw== [fileUNF] |
Citation |
|
Title: |
Replication Data for: Economic shifts in agricultural production and trade from climate change |
Identification Number: |
doi:10.7910/DVN/48BCMJ |
Authoring Entity: |
Porfirio, Luciana (CSIRO) |
Distributor: |
Harvard Dataverse |
Access Authority: |
Porfirio, Luciana |
Depositor: |
Porfirio, Luciana |
Date of Deposit: |
2018-08-07 |
Holdings Information: |
https://doi.org/10.7910/DVN/48BCMJ |
Study Scope |
|
Keywords: |
Agricultural Sciences, Earth and Environmental Sciences, Social Sciences, GTEMC |
Abstract: |
In addition to expanding agricultural land area and intensifying crop yields, increasing the global trade of agricultural products is one mechanism that humanity has adopted to meet the nutritional demands of a growing population. However, climate change will affect the distribution of agricultural production and, therefore, food supply and global markets. Here we quantify the structural changes in the global agricultural trade network under the two contrasting greenhouse gas emissions scenarios by coupling seven Global Gridded Crop Models and five Earth System Models to a global dynamic economic model. Our results suggest that global trade patterns of agricultural commodities may be significantly different from today’s reality with or without carbon mitigation. More specifically, the agricultural trade network becomes more centralised under the high CO2 emissions scenario, with a few regions dominating the markets. Under the carbon mitigation scenario, the trade network is more distributed and more regions are involved as either importers or exporters. Theoretically, the more distributed the structure of a network, the less vulnerable the system is to climatic or institutional shocks. Mitigating CO2 emissions has the co-benefit of creating a more stable agricultural trade system that may be better able to reduce food insecurity. |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Notes: |
<a href="http://creativecommons.org/publicdomain/zero/1.0">CC0 1.0</a> |
Other Study Description Materials |
|
Related Publications |
|
Citation |
|
Title: |
Economic shifts in agricultural production and trade due to climate change Luciana L. Porfirio, David Newth, John J. Finnigan & Yiyong Cai Palgrave Communicationsvolume 4, Article number: 111 (2018) https://www.nature.com/articles/s41599-018-0164-y |
Identification Number: |
10.1057/s41599-018-0164-y |
Bibliographic Citation: |
Economic shifts in agricultural production and trade due to climate change Luciana L. Porfirio, David Newth, John J. Finnigan & Yiyong Cai Palgrave Communicationsvolume 4, Article number: 111 (2018) https://www.nature.com/articles/s41599-018-0164-y |
File Description--f3205053 |
|
File: results_gtemc_2.tab |
|
|
|
Notes: |
UNF:6:S3jTz86/iDEbZC3U69MzLw== |
List of Variables: | |
Variables |
|
f3205053 Location: |
Summary Statistics: Mean 2033.5; Max. 2059.0; Valid 52.0; StDev 15.154757228892407; Min. 2008.0 Variable Format: numeric Notes: UNF:6:qmZjdJBQFfs8TTwgzEll5A== |
f3205053 Location: |
Summary Statistics: Mean 1.5729881253653846; Max. 1.77199432; Min. 1.42304677; Valid 52.0; StDev 0.13174014531296888; Variable Format: numeric Notes: UNF:6:MuPBfhQ4YzFINd5LPjwBCw== |
f3205053 Location: |
Summary Statistics: StDev 0.12790604637143452; Max. 1.797655421; Valid 52.0; Mean 1.5932097451153846; Min. 1.418027072; Variable Format: numeric Notes: UNF:6:Sl+z1K1iWNhMauHsYuQO5g== |
f3205053 Location: |
Summary Statistics: Max. 1.777929573; Min. 1.463744278; Valid 52.0; StDev 0.12399971019341897; Mean 1.597097986173077 Variable Format: numeric Notes: UNF:6:VMcT5T1KzmhmcucoXS7euw== |
f3205053 Location: |
Summary Statistics: Valid 52.0; StDev 0.14768573573936444; Max. 1.846258848; Min. 1.459385141; Mean 1.6050909364038461; Variable Format: numeric Notes: UNF:6:pz9mztQsqxkwfIsNlVzzJg== |
f3205053 Location: |
Summary Statistics: Max. 0.038825908; Min. -0.062933629; StDev 0.025401617314480058; Mean -0.0038882407115384612; Valid 52.0; Variable Format: numeric Notes: UNF:6:zaGP4ynvfPhylS6hHv2Xow== |
f3205053 Location: |
Summary Statistics: Mean -0.032102811076923074; StDev 0.026785109524846498; Min. -0.127056765; Valid 52.0; Max. 0.010807465 Variable Format: numeric Notes: UNF:6:po3P8Ezabkjs4205c1VuBg== |
f3205053 Location: |
Summary Statistics: Min. 1.364450098; Max. 1.70861976; Mean 1.5094902859038462; Valid 52.0; StDev 0.12518990038115863; Variable Format: numeric Notes: UNF:6:2KFk419t8Ny9VaDe3Zg0kg== |
f3205053 Location: |
Summary Statistics: StDev 0.13214572635521385; Mean 1.6502946226153847; Min. 1.458875654; Max. 1.870018714; Valid 52.0; Variable Format: numeric Notes: UNF:6:2lbjnslruIeUaJkE4GFnCg== |
f3205053 Location: |
Summary Statistics: Max. 1.689738145; Min. 1.387870751; StDev 0.11111818127529158; Mean 1.5269702514423076; Valid 52.0 Variable Format: numeric Notes: UNF:6:xszaLQxJ2dH4tItwnby5KQ== |
f3205053 Location: |
Summary Statistics: Max. 1.906366511; Mean 1.6651287835576922; Min. 1.447409699; StDev 0.1463598051826472; Valid 52.0 Variable Format: numeric Notes: UNF:6:GFemdffhhXXcTajRAiaOJA== |
f3205053 Location: |
Summary Statistics: Min. -0.01825807; Mean 0.06803079740384615; Valid 52.0; Max. 0.141777811; StDev 0.039301795079402894; Variable Format: numeric Notes: UNF:6:9iw+ecBNzXGm8ZFYol+phQ== |
f3205053 Location: |
Summary Statistics: Valid 52.0; Mean -0.07012773473076923; Min. -0.137566799; Max. -0.006577041; StDev 0.02859580967899495 Variable Format: numeric Notes: UNF:6:l4NaPrzNlvsxeKxTxVd0/A== |
f3205053 Location: |
Summary Statistics: StDev 0.04034059851539875; Min. -0.04513667; Mean 0.04520368621153846; Valid 52.0; Max. 0.141074885; Variable Format: numeric Notes: UNF:6:Hp2WerXFQPr90Bedr7chcw== |
f3205053 Location: |
Summary Statistics: Max. -0.050937339; Mean -0.09560065053846153; StDev 0.03159940486920373; Min. -0.192320243; Valid 52.0; Variable Format: numeric Notes: UNF:6:NlLYJ1vVfSfZ1EEHqCa8vA== |
f3205053 Location: |
Summary Statistics: Valid 52.0; Mean 0.007992950250000004; Min. -0.01990017; Max. 0.076869485; StDev 0.025256788944105803; Variable Format: numeric Notes: UNF:6:pNS54RizEwOzJuJpajj3zg== |
f3205053 Location: |
Summary Statistics: Min. -0.059193131; Valid 52.0; Mean -0.02022162005769231; StDev 0.023699423293764503; Max. 0.049796925 Variable Format: numeric Notes: UNF:6:QmccuMM80Pmy9c99XcADRA== |
Label: |
READ_ME.txt |
Text: |
Description of 'csv' files |
Notes: |
text/plain |
Label: |
results_gtemc_1.csv |
Notes: |
text/csv |