View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
05_Air Pollution and COVID-19 Mortality |
Identification Number: |
doi:10.7910/DVN/5ZN1UF |
Distributor: |
Harvard Dataverse |
Date of Distribution: |
2021-05-26 |
Version: |
1 |
Bibliographic Citation: |
Spatial Data Lab, 2021, "05_Air Pollution and COVID-19 Mortality", https://doi.org/10.7910/DVN/5ZN1UF, Harvard Dataverse, V1 |
Citation |
|
Title: |
05_Air Pollution and COVID-19 Mortality |
Identification Number: |
doi:10.7910/DVN/5ZN1UF |
Authoring Entity: |
Spatial Data Lab (Spatial Data Lab) |
Distributor: |
Harvard Dataverse |
Access Authority: |
Spatial Data Lab |
Depositor: |
China, Data Lab |
Date of Deposit: |
2021-05-26 |
Holdings Information: |
https://doi.org/10.7910/DVN/5ZN1UF |
Study Scope |
|
Keywords: |
Computer and Information Science, Earth and Environmental Sciences, Medicine, Health and Life Sciences, Social Sciences |
Abstract: |
This is a paper replication using worfklow tool KNIME. The origignal paper is published on Science Advances at https://advances.sciencemag.org/content/6/45/eabd4049. Reference: Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., & Dominici, F. (2020). Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science advances, 6(45), eabd4049. |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Notes: |
<a href="http://creativecommons.org/publicdomain/zero/1.0">CC0 1.0</a> |
Other Study Description Materials |
|
Label: |
05_air_pollution.knwf |
Notes: |
application/octet-stream |