View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Replication Data for: Using Supervised Learning to Select Audit Targets in Performance-Based Financing in Health: An Example from Zambia |
Identification Number: |
doi:10.7910/DVN/LHUIBO |
Distributor: |
Harvard Dataverse |
Date of Distribution: |
2018-12-14 |
Version: |
1 |
Bibliographic Citation: |
Grover, Dhruv; Bauhoff, Sebastian; Friedman, Jed, 2018, "Replication Data for: Using Supervised Learning to Select Audit Targets in Performance-Based Financing in Health: An Example from Zambia", https://doi.org/10.7910/DVN/LHUIBO, Harvard Dataverse, V1 |
Citation |
|
Title: |
Replication Data for: Using Supervised Learning to Select Audit Targets in Performance-Based Financing in Health: An Example from Zambia |
Identification Number: |
doi:10.7910/DVN/LHUIBO |
Authoring Entity: |
Grover, Dhruv (University of California, San Diego) |
Bauhoff, Sebastian (Center for Global Development) |
|
Friedman, Jed (World Bank) |
|
Distributor: |
Harvard Dataverse |
Access Authority: |
Bauhoff, Sebastian |
Depositor: |
Bauhoff, Sebastian |
Date of Deposit: |
2018-12-14 |
Holdings Information: |
https://doi.org/10.7910/DVN/LHUIBO |
Study Scope |
|
Keywords: |
Social Sciences, Health Policy, Pay for Performance, Audit |
Abstract: |
Independent verification is a critical component of performance-based financing (PBF) in health care, in which facilities are offered incentives to increase the volume of specific services but the same incentives may lead them to over-report. We examine alternative strategies for targeted sampling of health clinics for independent verification. Specifically, we empirically compare several methods of random sampling and predictive modeling on data from a Zambian PBF pilot that contains reported and verified performance for quantity indicators of 140 clinics. Our results indicate that machine learning methods, particularly Random Forest, outperform other approaches and can increase the cost-effectiveness of verification activities. |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Notes: |
<a href="http://creativecommons.org/publicdomain/zero/1.0">CC0 1.0</a> |
Other Study Description Materials |
|
Related Publications |
|
Citation |
|
Title: |
Grover, Dhruv; Bauhoff, Sebastian & Friedman, Jed "Using supervised learning to select audit targets in performance-based financing in health: An example from Zambia" CGD Working Paper 481 |
Bibliographic Citation: |
Grover, Dhruv; Bauhoff, Sebastian & Friedman, Jed "Using supervised learning to select audit targets in performance-based financing in health: An example from Zambia" CGD Working Paper 481 |
Label: |
Zambia_data dictionary.docx |
Notes: |
application/vnd.openxmlformats-officedocument.wordprocessingml.document |
Label: |
Zambia_data.xlsx |
Notes: |
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet |
Label: |
license.txt |
Notes: |
text/plain |
Label: |
README.txt |
Notes: |
text/plain |
Label: |
oneHotDecode.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
oneHotEncode.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
parseData.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
readData.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
computeFoldSizes.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
getFoldVectors.m |
Notes: |
text/x-matlab |
Label: |
getVecsPerCat.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
mainCrossVal.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
randSortAndGroup.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
README.txt |
Notes: |
text/plain |
Label: |
computeF1.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
computePR.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
computeROC.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
plotPR.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
plotROC.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
computeRS.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
computeSRSbyDistrict.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
computeSRSbyRbf.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
predictML.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
trainLR.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
trainNB.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
trainRF.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
trainSVM.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
bayesOptRF.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
oobErrRF.m |
Notes: |
text/plain; charset=US-ASCII |
Label: |
plotParamsRF.m |
Notes: |
text/plain; charset=US-ASCII |