Replication data for: The Dangers of Extreme Counterfactuals (doi:10.7910/DVN/MJ1YCL)

View:

Part 1: Document Description
Part 2: Study Description
Part 3: Data Files Description
Part 4: Variable Description
Part 5: Other Study-Related Materials
Entire Codebook

Document Description

Citation

Title:

Replication data for: The Dangers of Extreme Counterfactuals

Identification Number:

doi:10.7910/DVN/MJ1YCL

Distributor:

Harvard Dataverse

Date of Distribution:

2007-11-28

Version:

5

Bibliographic Citation:

King, Gary; Zeng, Langche, 2007, "Replication data for: The Dangers of Extreme Counterfactuals", https://doi.org/10.7910/DVN/MJ1YCL, Harvard Dataverse, V5, UNF:3:ytKKNjK+yR8Pq3H0RcV6eg== [fileUNF]

Study Description

Citation

Title:

Replication data for: The Dangers of Extreme Counterfactuals

Identification Number:

doi:10.7910/DVN/MJ1YCL

Authoring Entity:

King, Gary (Harvard University)

Zeng, Langche (UC San Diego)

Date of Production:

2006

Distributor:

Harvard Dataverse

Distributor:

Harvard Dataverse

Date of Deposit:

2006

Date of Distribution:

2006

Holdings Information:

https://doi.org/10.7910/DVN/MJ1YCL

Study Scope

Keywords:

Social Sciences

Abstract:

We address the problem that occurs when inferences about counterfactuals -- predictions, "what if" questions, and causal effects -- are attempted far from the available data. The danger of these extreme counterfactuals is that substantive conclusions drawn from statistical models that fit the data well turn out to be based largely on speculation hidden in convenient modeling assumptions that few would be willing to defend. Yet existing statistical strategies provide few reliable means of identifying extreme counterfactuals. We offer a proof that inferences farther from the data are more model-dependent, and then develop easy-to-apply methods to evaluate how model-dependent our answers would be to specified counterfactuals. These methods require neither sen sitivity testing over specified classes of models nor evaluating any specific modeling assumptions. If an analysis fails the simple tests we offer, then we know that substantive results are sensitive to at least some modeling choices that are not based on empirical evidence. <br /> <br /> See also: <a href= "http://gking.harvard.edu/category/research-interests/methods/causal-inference" target="_blank">Casual Inference</a>

Methodology and Processing

Sources Statement

Data Access

Notes:

This dataset is made available without information on how it can be used. You should communicate with the Contact(s) specified before use.

Other Study Description Materials

Related Publications

Citation

Title:

King, Gary, and Langche Zeng. 2006. The Dangers of Extreme Counterfactuals. Political Analysis 14: 131–159: <a href= "http://j.mp/iJ7KVv" target="_blank">Link to article</a>

Bibliographic Citation:

King, Gary, and Langche Zeng. 2006. The Dangers of Extreme Counterfactuals. Political Analysis 14: 131–159: <a href= "http://j.mp/iJ7KVv" target="_blank">Link to article</a>

File Description--f101364

File: sf.tab

  • Number of cases: 7190

  • No. of variables per record: 13

  • Type of File: text/tab-separated-values

Notes:

UNF:3:ytKKNjK+yR8Pq3H0RcV6eg==

The state failure data set

Variable Description

List of Variables:

Variables

year

f101364 Location:

Variable Format: numeric

Notes: UNF:3:N1a4mhg91mYPJI/1jZ2gWA==

country

f101364 Location:

Variable Format: numeric

Notes: UNF:3:dgHhL61f796RA9SM2KBlsA==

TF

f101364 Location:

Variable Format: numeric

Notes: UNF:3:xL0QHnuvtOmp/ZQonIXPKw==

Y

f101364 Location:

Variable Format: numeric

Notes: UNF:3:szdxnBR3DNQPzxfGCalqhA==

x1

f101364 Location:

Variable Format: numeric

Notes: UNF:3:6sHEUlqq/ua1J5rRZscQgg==

x2

f101364 Location:

Variable Format: numeric

Notes: UNF:3:c5a5Oxrl4w2c9dxld0S+QA==

x3

f101364 Location:

Variable Format: numeric

Notes: UNF:3:3wSrJvmkQA4YWoYQqAz3nA==

demf

f101364 Location:

Variable Format: numeric

Notes: UNF:3:39A1BbWb3IXb8CF+JUZdbw==

demp

f101364 Location:

Variable Format: numeric

Notes: UNF:3:LUTKzTUUimZp0Oj9P/8ZTQ==

x4

f101364 Location:

Variable Format: numeric

Notes: UNF:3:U8ffCNoGBT+ad7ghY78lkg==

x5

f101364 Location:

Variable Format: numeric

Notes: UNF:3:YNsVvPkK+ZiOYR+3OWYkQQ==

region

f101364 Location:

Variable Format: numeric

Notes: UNF:3:CNxnpCEXh7Ahksj51oCltA==

autoc

f101364 Location:

Variable Format: numeric

Notes: UNF:3:ERHYhrVdycTfWQeZsgqpxA==

Other Study-Related Materials

Label:

counterf_eg.out

Text:

Contains the output file

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

counterf_eg.R

Text:

R code checking hull membership of the 4 counterfactual examples, as well as Haiti counterfactuals

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

DangersArticle.pdf

Text:

Original Article for this Study: The Dangers of Extreme Counterfactuals

Notes:

application/pdf

Other Study-Related Materials

Label:

readme.txt

Text:

Detailed information about the files in this study

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

sf.dist.R

Text:

R code computing Gower distance related measures for all counterfactuals

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

sf.dta

Text:

The state failure data set, stata format

Notes:

application/x-stata

Other Study-Related Materials

Label:

sf.hull.R

Text:

File to check convex hull membership of all counterfactuals

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

sf.out

Text:

The output resulting from sourcing sf.dist.R and then sf.R

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

sf.R

Text:

File that obtains data for table 1

Notes:

text/plain; charset=US-ASCII