Replication data for: Causal Inference Without Balance Checking: Coarsened Exact Matching (doi:10.7910/DVN/NMMYYW)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

Document Description

Citation

Title:

Replication data for: Causal Inference Without Balance Checking: Coarsened Exact Matching

Identification Number:

doi:10.7910/DVN/NMMYYW

Distributor:

Harvard Dataverse

Date of Distribution:

2011-03-02

Version:

5

Bibliographic Citation:

Iacus, Stefano M.; King, Gary; Porro, Giuseppe, 2011, "Replication data for: Causal Inference Without Balance Checking: Coarsened Exact Matching", https://doi.org/10.7910/DVN/NMMYYW, Harvard Dataverse, V5

Study Description

Citation

Title:

Replication data for: Causal Inference Without Balance Checking: Coarsened Exact Matching

Identification Number:

doi:10.7910/DVN/NMMYYW

Authoring Entity:

Iacus, Stefano M. (University of Milan)

King, Gary (Harvard University)

Porro, Giuseppe (University of Trieste)

Producer:

Political Analysis

Date of Production:

2011

Distributor:

Harvard Dataverse

Distributor:

Harvard Dataverse

Access Authority:

Gary King

Date of Deposit:

2011-03-02

Date of Distribution:

2011

Series Name:

Volume 20, Issue 1

Holdings Information:

https://doi.org/10.7910/DVN/NMMYYW

Study Scope

Keywords:

Social Sciences

Abstract:

We discuss a method for improving causal inferences called "Coarsened Exact Matching'' (CEM), and the new "Monotonic Imbalance Bounding'' (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of desirable statistical properties not available in most other matching methods, but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software for R and Stata which implement all our suggestions. <br /><br /> <a href="http://pan.oxfordjournals.org/content/early/2011/08/23/pan.mpr013.abstract?keytype=ref&amp;ijkey=Bmb7XaiUlYkVW9j" target="_blank">Political Analysis version</a> <br /><br /> <a href="https://docs.google.com/document/d/1xQwyLt_6EXdNpA685LjmhjO20y5pZDZYwe2qeNoI5dE/edit" target="_blank"> An Explanation of CEM Weights</a> <br /><br /> See also: <a href="http://gking.harvard.edu/category/research-interests/methods/causal-inference" target="_blank">Causal Inference</a>

Methodology and Processing

Sources Statement

Data Access

Notes:

<a href="http://creativecommons.org/publicdomain/zero/1.0">CC0 1.0</a>

Other Study Description Materials

Related Publications

Citation

Title:

Iacus, Stefano M, Gary King, and Giuseppe Porro. 2012. "Causal Inference Without Balance Checking: Coarsened Exact Matching." Political Analysis (Winter 2012) 20 (1): 1-24. <a href="http://j.mp/iUUwyH" target="_blank">Link to article</a> and <a href="http://pan.oxfordjournals.org/content/early/2011/08/23/pan.mpr013.short" target="_blank">doi: 10.1093/pan/mpr013</a>

Bibliographic Citation:

Iacus, Stefano M, Gary King, and Giuseppe Porro. 2012. "Causal Inference Without Balance Checking: Coarsened Exact Matching." Political Analysis (Winter 2012) 20 (1): 1-24. <a href="http://j.mp/iUUwyH" target="_blank">Link to article</a> and <a href="http://pan.oxfordjournals.org/content/early/2011/08/23/pan.mpr013.short" target="_blank">doi: 10.1093/pan/mpr013</a>

Other Study-Related Materials

Label:

cemsim-penta.R

Text:

this generates cemsim-penta.rda

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

cemsim-penta.rda

Text:

used by lalonde-sim.R

Notes:

application/warc

Other Study-Related Materials

Label:

lalonde-sim.R

Text:

run this to produce Table 2

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

measerr.R

Text:

run this to produce Table 1

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

measerr2.R

Text:

a file called by measerr.R

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

measerr2.rda

Text:

produced by measerr2.R

Notes:

application/warc

Other Study-Related Materials

Label:

progcem.R

Text:

run this to produce Figure 1

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

ReadMe.txt

Text:

describes the files in this study

Notes:

text/plain; charset=US-ASCII