Data from the AgMIP-Wheat high-yielding traits experiment for modeling potential production of wheat: field experiments and multi-model simulations (doi:10.7910/DVN/VKWKUP)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

Document Description

Citation

Title:

Data from the AgMIP-Wheat high-yielding traits experiment for modeling potential production of wheat: field experiments and multi-model simulations

Identification Number:

doi:10.7910/DVN/VKWKUP

Distributor:

Harvard Dataverse

Date of Distribution:

2022-12-07

Version:

2

Bibliographic Citation:

Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N.L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Eyshi Rezaei, Ehsan; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W.M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ruiz Ramos, Margarita; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold, 2022, "Data from the AgMIP-Wheat high-yielding traits experiment for modeling potential production of wheat: field experiments and multi-model simulations", https://doi.org/10.7910/DVN/VKWKUP, Harvard Dataverse, V2

Study Description

Citation

Title:

Data from the AgMIP-Wheat high-yielding traits experiment for modeling potential production of wheat: field experiments and multi-model simulations

Identification Number:

doi:10.7910/DVN/VKWKUP

Authoring Entity:

Guarin, Jose Rafael (Columbia University)

Martre, Pierre (LEPSE)

Ewert, Frank (ZALF)

Webber, Heidi (ZALF)

Dueri, Sibylle (LEPSE)

Calderini, Daniel (Austral University of Chile)

Reynolds, Matthew (CIMMYT)

Molero, Gemma (KWS Lille)

Miralles, Daniel (University of Buenos Aires)

Garcia, Guillermo (University of Buenos Aires)

Slafer, Gustavo (University of Lleida)

Giunta, Francesco (University of Sassari)

Pequeno, Diego N.L. (CIMMYT)

Stella, Tommaso (ZALF)

Ahmed, Mukhtar (Pir Mehr Ali Shah Arid Agriculture University)

Alderman, Phillip D. (Oklahoma State University)

Basso, Bruno (Michigan State University)

Berger, Andres G. (INIA)

Bindi, Marco (University of Florence)

Bracho Mujica, Gennady (University of Göttingen)

Cammarano, Davide (Purdue University)

Chen, Yi (Chinese Academy of Science)

Dumont, Benjamin (University of Liege)

Eyshi Rezaei, Ehsan (ZALF)

Fereres, Elias (University of Cordoba)

Ferrise, Roberto (University of Florence)

Gaiser, Thomas (University of Bonn)

Gao, Yujing (University of Florida)

Garcia-Vila, Margarita (University of Cordoba)

Gayler, Sebastian (University of Hohenheim)

Hochman, Zvi (CSIRO)

Hoogenboom, Gerrit (University of Florida)

Hunt, Leslie A. (University of Guelph)

Kersebaum, Kurt C. (ZALF)

Nendel, Claas (ZALF)

Olesen, Jørgen E. (Aarhus University)

Palosuo, Taru (LUKE)

Priesack, Eckart (Helmholtz Zentrum München)

Pullens, Johannes W.M. (Aarhus University)

Rodríguez, Alfredo (Technic University of Madrid)

Rötter, Reimund P. (University of Göttingen)

Ruiz Ramos, Margarita (Technic University of Madrid)

Semenov, Mikhail A. (Rothamsted Research)

Senapati, Nimai (Rothamsted Research)

Siebert, Stefan (University of Göttingen)

Srivastava, Amit Kumar (University of Bonn)

Stöckle, Claudio (Washington State University)

Supit, Iwan (Wageningen University)

Tao, Fulu (LUKE)

Thorburn, Peter (CSIRO)

Wang, Enli (CSIRO)

Weber, Tobias Karl David (University of Hohenheim)

Xiao, Liujun (Zhejiang University)

Zhang, Zhao (Beijing Normal University)

Zhao, Chuang (China Agricultural University)

Zhao, Jin (Aarhus University)

Zhao, Zhigan (China Agricultural University)

Zhu, Yan (Nanjing Agricultural University)

Asseng, Senthold (Technical University of Munich)

Distributor:

Harvard Dataverse

Access Authority:

Guarin, Jose

Depositor:

Guarin, Jose

Date of Deposit:

2022-02-11

Holdings Information:

https://doi.org/10.7910/DVN/VKWKUP

Study Scope

Keywords:

Agricultural Sciences, wheat, yield potential, field experimental data, crop model ensemble, simulations

Abstract:

The dataset reported here was created to analyze the value of physiological traits identified by the International Wheat Yield Partnership (IWYP) to improve wheat potential in high-yielding environments. This dataset consists of 11 growing seasons at three high-yielding locations in Buenos Aires (Argentina), Ciudad Obregon (Mexico), and Valdivia (Chile) with the spring wheat cultivar Bacanora and a high-yielding genotype selected from a doubled haploid (DH) population developed from the cross between the Bacanora and Weebil cultivars from the International Maize and Wheat Improvement Center (CIMMYT). This dataset was used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Phase 4 to evaluate crop model performance when simulating high-yielding physiological traits and to determine the potential production of wheat using an ensemble of 29 wheat crop models. The field trials were managed for non-stress conditions with full irrigation, fertilizer application, and without biotic stress. Data include local daily weather, soil characteristics and initial soil conditions, cultivar information, and crop measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, yield components, and photosynthetically active radiation interception). Simulations include both daily in-season and end-of-season results for 25 crop variables simulated by 29 wheat crop models. The R code and formatted data used for the statistical analyses are included.

Methodology and Processing

Sources Statement

Data Access

Notes:

Full access will be granted upon journal publication. Contact j.guarin@columbia.edu for access.

Other Study Description Materials

Other Study-Related Materials

Label:

CIM_AgMIP.rar

Text:

Field experimental data and model simulated outputs from the AgMIP-Wheat High-yielding traits experiment.

Notes:

application/x-rar-compressed