Persistent Identifier
|
doi:10.7910/DVN/NMX9VE |
Publication Date
|
2024-11-28 |
Title
| Dataset: Census of individual trees of Hacienda San Jose Vichada (2023) |
Author
| Ruiz Hurtado, Andres FelipeInternational Center for Tropical Agriculture - CIATORCIDhttps://orcid.org/0000-0003-1293-8736
Perez Bolanos, JulianaInternational Center for Tropical Agriculture - CIATORCIDhttps://orcid.org/0009-0008-8076-724X
Arrechea Castillo, Darwin AlexisInternational Center for Tropical Agriculture - CIATORCIDhttps://orcid.org/0000-0002-2395-2181
Matiz Rubio, NataliaInternational Center for Tropical Agriculture - CIAT
Costa Junior, CiniroInternational Center for Tropical Agriculture - CIATORCIDhttps://orcid.org/0000-0003-1854-2927
Arango Mejia, JacoboInternational Center for Tropical Agriculture - CIATORCIDhttps://orcid.org/0000-0002-4828-9398
Cardoso Arango, Juan AndrésInternational Center for Tropical Agriculture - CIATORCIDhttps://orcid.org/0000-0002-0252-4655 |
Point of Contact
|
Use email button above to contact.
Alliance Data Management (Bioversity International and the International Center for Tropical Agriculture) |
Description
| This dataset contains information of estimated individual trees in Hacienda San José (HSJ), Vichada-Colombia extracted from remote sensing imagery processed using AI models and the TreeEyed QGIS Plugin. The dataset includes a CSV file with attributes related to tree dimensions and geolocation and a shapefile with polygons representing each tree.
Methodology:The tree information for this dataset was obtained using a custom QGIS plugin (TreeEyed) and python scripting, designed to process high-resolution RGB remote sensing imagery to derive tree data. Leveraging AI pretrained models, in this case Meta's HighResCanopyHeight model was employed. The methodology involved processing RGB imagery with a resolution of 0.5 meters and dimensions of 42,686x30,630 pixels for the region of interest, a subdivision in 1260 tiles of 1024x1024 pixels to process and obtain canopy tree height rasters, merging, vectorizing tree instances, and filtering to isolate individual trees. Zonal statistics were then applied to assign estimated tree height values to each instance by extracting the maximum pixel value within the tree crown polygon boundary. This approach allowed for flexible and localized analysis, enabling the derivation of detailed tree metrics such as height, crown area and perimeter, and equivalent diameter from high-resolution RGB imagery. (2024-11) |
Subject
| Earth and Environmental Sciences; Agricultural Sciences |
Keyword
| remote sensing (AGROVOC) http://aims.fao.org/aos/agrovoc/c_6498
artificial intelligence (AGROVOC) http://aims.fao.org/aos/agrovoc/c_27064
Americas (Research Region)
Crops for Nutrition and Health (Research Lever) |
Topic Classification
| data collection (AGROVOC) http://aims.fao.org/aos/agrovoc/c_2128
trees (AGROVOC) http://aims.fao.org/aos/agrovoc/c_7887
agroforestry (AGROVOC) http://aims.fao.org/aos/agrovoc/c_207
silvopastoral systems (AGROVOC) http://aims.fao.org/aos/agrovoc/c_16097 |
Language
| English |
Producer
| Bioversity International and the International Center for Tropical Agriculture https://alliancebioversityciat.org/ |
Production Date
| 2023 |
Funding Information
| USA-Bezos Earth Fund though Bioversity International USA, Inc .- Using genetic diversity to capture carbon through deep root systems in tropical soils (Research and Capacity development): A486 |
Distributor
| Bioversity International and the International Center for Tropical Agriculture https://alliancebioversityciat.org/ |
Depositor
| Alliance Data Management |
Deposit Date
| 2024-11-25 |
Time Period
| Start Date: 2023; End Date: 2023 |
Date of Collection
| Start Date: 2023; End Date: 2023 |
Data Type
| Geospatial Data; Interpolated Data; Quantitative Data; Geographic Data |
Related Dataset
| Ruiz Hurtado, Andres Felipe; Perez Bolanos, Juliana; Arrechea Castillo, Darwin Alexis; Cardoso Arango, Juan Andres, 2024, "Census of individual trees of Hacienda San Jose Vichada (2020)", https://doi.org/10.7910/DVN/5TEA8E, Harvard Dataverse, V1 |
Other Reference
| Ruiz-Hurtado, A.F.; Cardoso Arango, J.A. (2024) TreeEyed: QGIS plugin for tree monitoring. [Software] Version 0.1.; Tolan, J., Yang, H.-I., Nosarzewski, B., Couairon, G., Vo, H.V., Brandt, J., Spore, J., Majumdar, S., Haziza, D., Vamaraju, J., Moutakanni, T., Bojanowski, P., Johns, T., White, B., Tiecke, T., Couprie, C., 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment 300, 113888. https://doi.org/10.1016/j.rse.2023.113888 |