Related Publication
| @misc{deepa_shukla_2024, title={Review of Alternative Datasets for Credit Scoring}, url={https://www.kaggle.com/dsv/9041453}, DOI={10.34740/KAGGLE/DSV/9041453}, publisher={Kaggle}, author={Deepa Shukla}, year={2024} } doi 10.34740/KAGGLE/DSV/9041453 https://www.kaggle.com/dsv/9041453
Smith, M., & Henderson, C. (2018). Beyond Thin Credit Files. Social Science Quarterly, 99, 24-42. doi 10.1111/SSQU.12389 https://doi.org/10.1111/SSQU.12389
Cheney, J. (2008). Alternative Data and its Use in Credit Scoring Thin- and No-File Consumers. Banking & Insurance. doi 10.2139/ssrn.1160283 https://doi.org/10.2139/ssrn.1160283
Rozo, B., Crook, J., & Andreeva, G. (2021). The Role of Web Browsing in Credit Risk Prediction. Econometrics: Econometric & Statistical Methods - Special Topics eJournal. doi 10.1016/j.dss.2022.113879 https://doi.org/10.1016/j.dss.2022.113879
Fu, G., Sun, M., & Xu, Q. (2020). An Alternative Credit Scoring System in China's Consumer Lending Market: A System Based on Digital Footprint Data. Decision-Making in Economics eJournal. doi 10.2139/ssrn.3638710 https://doi.org/10.2139/ssrn.3638710
Zhou, J., Wang, C., Ren, F., & Chen, G. (2021). Inferring multi-stage risk for online consumer credit services: An integrated scheme using data augmentation and model enhancement. Decis. Support Syst., 149, 113611. doi 10.1016/J.DSS.2021.113611 https://doi.org/10.1016/J.DSS.2021.113611
Djeundje, V., Crook, J., Calabrese, R., & Hamid, M. (2021). Enhancing credit scoring with alternative data. Expert Syst. Appl., 163, 113766. doi 10.1016/j.eswa.2020.113766 https://doi.org/10.1016/j.eswa.2020.113766
Sustersic, M., Mramor, D., & Zupan, J. (2007). Consumer Credit Scoring Models with Limited Data. Banking & Financial Institutions eJournal. doi 10.2139/ssrn.967384 https://doi.org/10.2139/ssrn.967384
Huang, C., Chen, M., & Wang, C. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Syst. Appl., 33, 847-856. doi 10.1016/j.eswa.2006.07.007 https://doi.org/10.1016/j.eswa.2006.07.007
Jiang, J., Liao, L., Lu, X., Wang, Z., & Xiang, H. (2020). Deciphering Big Data in Consumer Credit Evaluation. International Political Economy: Investment & Finance eJournal. doi 10.2139/ssrn.3312163 https://doi.org/10.2139/ssrn.3312163
Dastile, X., Çelik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Appl. Soft Comput., 91, 106263. doi 10.1016/j.asoc.2020.106263 https://doi.org/10.1016/j.asoc.2020.106263
Bequé, A., & Lessmann, S. (2017). Extreme learning machines for credit scoring: An empirical evaluation. Expert Syst. Appl., 86, 42-53. doi 10.1016/j.eswa.2017.05.050 https://doi.org/10.1016/j.eswa.2017.05.050
Jiang, J., Liao, L., Lu, X., Wang, Z., & Xiang, H. (2021). Deciphering big data in consumer credit evaluation. Journal of Empirical Finance. doi 10.1016/J.JEMPFIN.2021.01.009 https://doi.org/10.1016/J.JEMPFIN.2021.01.009
He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Syst. Appl., 98, 105-117. doi 10.1016/j.eswa.2018.01.012 https://doi.org/10.1016/j.eswa.2018.01.012
Munkhdalai, L., Munkhdalai, T., Namsrai, O., Lee, J., & Ryu, K. (2019). An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments. Sustainability. doi 10.3390/SU11030699 https://doi.org/10.3390/SU11030699
Aggarwal, N. (2018). Machine Learning, Big Data and the Regulation of Consumer Credit Markets: The Case of Algorithmic Credit Scoring. Discrimination. doi 10.2139/ssrn.3309244 https://doi.org/10.2139/ssrn.3309244
Zhu, B., Yang, W., Wang, H., & Yuan, Y. (2018). A hybrid deep learning model for consumer credit scoring. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), 205-208. doi 10.1109/ICAIBD.2018.8396195 https://doi.org/10.1109/ICAIBD.2018.8396195
McCanless, M. (2023). Banking on alternative credit scores: Auditing the calculative infrastructure of U.S. consumer lending. Environment and Planning A: Economy and Space, 55, 2128 - 2146. doi 10.1177/0308518X231174026 https://doi.org/10.1177/0308518X231174026
Wiginton, J. (1980). A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior. Journal of Financial and Quantitative Analysis, 15, 757 - 770. doi 10.2307/2330408 https://doi.org/10.2307/2330408
Ala’raj, M., Abbod, M., & Majdalawieh, M. (2021). Modelling customers credit card behaviour using bidirectional LSTM neural networks. Journal of Big Data, 8, 1-27. doi 10.1186/s40537-021-00461-7 https://doi.org/10.1186/s40537-021-00461-7
Saberi, M., Mirtalaei, M., Hussain, F., Azadeh, A., Hussain, O., & Ashjari, B. (2013). A granular computing-based approach to credit scoring modeling. Neurocomputing, 122, 100-115. doi 10.1016/j.neucom.2013.05.020 https://doi.org/10.1016/j.neucom.2013.05.020
Wei, Y., Yildirim, P., Bulte, C., & Dellarocas, C. (2014). Credit Scoring with Social Network Data. Economics of Networks eJournal. doi 10.2139/ssrn.2475265 https://doi.org/10.2139/ssrn.2475265
Wang, C., Han, D., Liu, Q., & Luo, S. (2019). A Deep Learning Approach for Credit Scoring of Peer-to-Peer Lending Using Attention Mechanism LSTM. IEEE Access, 7, 2161-2168. doi 10.1109/ACCESS.2018.2887138 https://doi.org/10.1109/ACCESS.2018.2887138
West, D. (2000). Neural network credit scoring models. Comput. Oper. Res., 27, 1131-1152. doi 10.1016/S0305-0548(99)00149-5 https://doi.org/10.1016/S0305-0548(99)00149-5
Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Syst. Appl., 39, 3446-3453. doi 10.1016/j.eswa.2011.09.033 https://doi.org/10.1016/j.eswa.2011.09.033
Lee, T., & Chen, I. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl., 28, 743-752. doi 10.1016/j.eswa.2004.12.031 https://doi.org/10.1016/j.eswa.2004.12.031
Mahjoub, R., & Afsar, A. (2019). A hybrid model for customer credit scoring in stock brokerages using data mining approach. Int. J. Bus. Inf. Syst., 31, 195-214. doi https://doi.org/10.1504/IJBIS.2019.10022044
Arram, A., Ayob, M., Albadr, M., Sulaiman, A., & Albashish, D. (2023). Credit card score prediction using machine learning models: A new dataset. ArXiv, abs/2310.02956. 10.48550/arXiv.2310.02956 https://doi.org/10.48550/arXiv.2310.02956
Junior, L., Nardini, F., Renso, C., Trani, R., & Macêdo, J. (2020). A novel approach to define the local region of dynamic selection techniques in imbalanced credit scoring problems. Expert Syst. Appl., 152, 113351. doi 10.1016/j.eswa.2020.113351 https://doi.org/10.1016/j.eswa.2020.113351 |