91 to 100 of 1,659 Results
R Syntax - 1007 B -
MD5: a0279e739e6949ac39f65ba804efccdc
|
R Syntax - 4.3 KB -
MD5: 3521715c48a8e9df70bd4fa373f86d26
|
R Data - 305 B -
MD5: df284390bb9f3e68fd9e00f301afce57
|
R Syntax - 469 B -
MD5: fc96759510e377b02f6c3bf28bfba43d
|
Python Source Code - 680 B -
MD5: d9495b7c70e8151d759b6300f8e0b5b8
|
R Syntax - 1.5 KB -
MD5: 9e927793a807c74ce534ae68e154ca8d
|
Jul 14, 2021
Jiang, Wenxin; King, Gary; Schmaltz, Allen; Tanner, Martin A., 2018, "Replication Data for: Ecological Regression with Partial Identification", https://doi.org/10.7910/DVN/8TB7GO, Harvard Dataverse, V3
NOTE: This is a pre-publication release. (Version 0.1.) This repository includes details for replicating the results in: Wenxin Jiang, Gary King, Allen Schmaltz, and Martin A. Tanner. 2018. "Ecological Regression with Partial Identification". (under review) |
Jul 11, 2021 - Political Analysis Dataverse
Jerzak, Connor; King, Gary; Strezhnev, Anton, 2021, "Replication Data for: An Improved Method of Automated Nonparametric Content Analysis for Social Science", https://doi.org/10.7910/DVN/AVNZR6, Harvard Dataverse, V1
Some scholars build models to classify documents into chosen categories. Others, especially social scientists who tend to focus on population characteristics, instead usually estimate the proportion of documents in each category -- using either parametric "classify-and-count" methods or "direct" nonparametric estimation of proportions without indiv... |
Jul 11, 2021 -
Replication Data for: An Improved Method of Automated Nonparametric Content Analysis for Social Science
ZIP Archive - 802.1 MB -
MD5: 138d8a50ae534b148df0cf17534a691d
|
Jul 11, 2021 -
Replication Data for: An Improved Method of Automated Nonparametric Content Analysis for Social Science
ZIP Archive - 3.7 MB -
MD5: 0e32218b2d3a0d76e6e9f69b2089d50e
|