21 to 30 of 2,307 Results
Unknown - 279.7 MB -
MD5: 33149cd0bbb197adf47264d3f2d7cfb3
year 2020 data |
Unknown - 301.5 MB -
MD5: 469f5dd0f7b0c4ded8ad50629e7758ab
year 2021 data |
Unknown - 307.1 MB -
MD5: 33c28af41d00f7a3133e9f8aa2f9e04c
year 2022 data |
Unknown - 304.6 MB -
MD5: dec35cff33601abe6487b782555d1182
year 2022 data |
Unknown - 304.8 MB -
MD5: ef0fb7c637d4a396b822337ad80bd25b
year 2024 data |
Unknown - 178.9 KB -
MD5: 9898dfbba64e7bac87caadd3177a5355
Weather Station Data-Hastings,FL (2000-2024) |
Mar 25, 2024
Chang, Spencer J; Chowdhry, Ritesh; Song, Yangyang; Mejia, Tomas; Hampton, Anna; Kucharski, Shelby; Sazzad, TM; Zhang, Yuxuan; Koppal, Sanjeev J; Wilson, Chris H; Gerber, Stefan; Tillman, Barry; Resende Jr., Marcio FR; Hammon, William M; Zare, Alina, 2023, "HyperPRI: A Dataset of Hyperspectral Images for Underground Plant Root Study", https://doi.org/10.7910/DVN/MAYDHT, Harvard Dataverse, V2, UNF:6:XOHEBSkt8rUG72t8Qt6U4g== [fileUNF]
Here we present Hyperspectral Plant Root Imagery (HyperPRI), the first available dataset of RGB and HSI data for in situ, non-destructive, underground plant root analysis using machine learning tools. HyperPRI contains images of plant roots grown in rhizoboxes for two annual crop species – peanut (Arachis hypogaea) and sweet corn (Zea mays). Drough... |
Fixed Field Text Data - 671.3 MB -
MD5: a13305afacd4ce112d90f3d270be1a3e
|
PNG Image - 1.3 MB -
MD5: 0a08465b9aaec06fa14dba44784fa94f
|
Fixed Field Text Data - 671.3 MB -
MD5: dd2a7da040373962e75b9c8200eae53b
|